
The separability of tripartite Gaussian states with amplification and amplitude damping

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 155301

(http://iopscience.iop.org/1751-8121/41/15/155301)

Download details:

IP Address: 171.66.16.148

The article was downloaded on 03/06/2010 at 06:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/15
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 155301 (10pp) doi:10.1088/1751-8113/41/15/155301

The separability of tripartite Gaussian states with
amplification and amplitude damping

Xiao-Yu Chen

College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou,
310018, People’s Republic of China

Received 12 January 2008, in final form 27 February 2008
Published 2 April 2008
Online at stacks.iop.org/JPhysA/41/155301

Abstract
The most general evolution solution of multi-mode continuous variable states
is given when it undergoes amplification, amplitude damping and thermal
noise. In the case of some kind of initial Gaussian state totally symmetrically
interacting with the environment, the conditions for full separability and full
entanglement of the final tripartite three-mode Gaussian state are worked out.

PACS numbers: 03.65.Yz, 42.50.Dv, 42.50.Lc

1. Introduction

Quantum entanglement of continuous variables (CV) [1–3] has received much attention
recently. Deterministic teleportation schemes [4–8], quantum key distribution protocols [9],
entanglement swapping [6, 10, 11], dense coding [12], quantum state storage [13] and quantum
computation [14] processes in quantum optical settings have been implemented. Among all
quantum CV states, quantum Gaussian states are well studied. Theoretically, almost all the
results about the separability and entanglement measures are first done on Gaussian systems,
then the results are extended to non-Gaussian systems if possible. Experimentally, essentially
all the experimentally realizable CV states are Gaussian. Former works are mainly on the
properties of bipartite systems. The study of CV multipartite entanglement was initiated
in [7, 10], where a scheme was suggested to create pure CV N-party entanglement using
squeezed light and N − 1 beam splitters. In the practical situation, such a pure multipartite
entanglement state will evolve to a mixed state, due to the interaction with the environment.
The effect of the environment on the quantum state is called decoherence. Amplitude damping
and thermal noise are two important kinds of decoherence. To overcome the loss in amplitude,
amplification may be used. We will investigate the state evolution of the quantum CV state in
the environment of amplitude damping, thermal noise and amplification. Of all the multipartite
CV states, the tri-mode entangled state is the simplest one, and a complete classification of
tri-mode entanglement was obtained, a directly computable criterion that allows us to determine
to which class a given state belongs [15, 16]. We will analyze the separability of tripartite
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Gaussian states in the presence of amplitude damping, parametric amplification and noise
which are symmetric among the modes, based on our former works on the corresponding
problem of bipartite CV systems [17, 18].

2. Time evolution of the characteristic function

The density matrix obeys the following master equation [19–21],

dρ

dt
= − i

h̄
[H, ρ] + Lρ, (1)

with the quadratic Hamiltonian

H = h̄
∑
jk

i

2

(
ηjka

†
j a

†
k − η∗

jkajak

)
, (2)

where ηjk are the entries of complex symmetric matrix η. In the single-mode case, this
Hamiltonian describes two-photon down-conversion from an undepleted (classical) pump
[21]. The full multi-mode model describes quasi-particle excitation in a BEC within the
Bogoliubov approximation [22]. This item represents the parametric amplifier. While the
amplitude damping is described by L,

Lρ =
∑

j

�j

2
{(nj + 1)L[aj ]ρ + njL

[
a
†
j

]
ρ, (3)

where the Lindblad super-operator is defined as L[̂o]ρ ≡ 2̂oρô† − ô†̂oρ − ρô†̂o. �j is the
damping coefficient and nj is the noise of the j th mode.

We now transform the density operator master equation to the diffusion equation of the
characteristic function. Any quantum state can be equivalently specified by its characteristic
function. Every operator A ∈ B(H) is completely determined by its characteristic function
χA := tr[AD(µ)] [23], where D(µ) = exp(µa† − µ∗a) is the displacement operator, with
µ = [µ1, µ2, . . . , µs], a = [a1, a2, . . . , as]T and the total number of modes being s. It follows

that A may be written in terms of χA as [24]: A = ∫ [∏
j

d2µj

π

]
χA(µ)D(−µ). The density

matrix ρ can be expressed with its characteristic function χ . χ = tr[ρD(µ)]. Multiplying
D(µ) to the master equation then taking the trace, the master equation of the density operator
will be transformed to the diffusion equation of the characteristic function. It should be
noted that the complex parameters µj are not a function of time, thus ∂χ

∂t
= tr

[
∂ρ

∂t
D(µ)

]
; the

parametric amplification part in the form of the characteristic function will be [21]

1

2
tr

⎧⎨
⎩

∑
jk

[
ηjka

†
j a

†
k − η∗

jkajak, ρ
]
D(µ)

⎫⎬
⎭ = −

∑
jk

(
ηjkµ

∗
j

∂χ

∂µk

+ η∗
jkµj

∂χ

∂µ∗
k

)
. (4)

The master equation can be transformed into the diffusion equation of the characteristic
function; it is [17]

∂χ

∂t
= −

∑
jk

(
ηjkµ

∗
j

∂χ

∂µk

+ η∗
jkµj

∂χ

∂µ∗
k

)
− 1

2

∑
j

�j

{
|µj | ∂χ

∂|µj | + (2nj + 1)|µj |2)χ
}

. (5)

The density operator can be expressed with canonical operators X = 1√
2
(a + a†), P =

i√
2
(a† − a) (the frequencies of the modes are omitted here) as well. Then the characteristic

function can be rewritten with real parameters x = [x1, x2, . . . , xs], p = [p1, p2, . . . , ps].
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Let D(µ) = exp(µa† − µ∗a) = exp[i(xX + pP )], we have χ(µ) = χ(x, p), with x =
− i√

2
(µ − µ∗), p = − 1√

2
(µ + µ∗). The diffusion equation of χ(x, p) is

∂χ

∂t
= [x, p]W

[
∂χ

∂x
,
∂χ

∂p

]T

− 1

2
[x, p]

[
Γ

(
n +

I
2

)
⊕ Γ

(
n +

I
2

)]
[x, p]T χ, (6)

with

W =
[
ηR − Γ

2 , ηI

ηI , −ηR − Γ
2

]
, (7)

where the real matrices ηR and ηI are the real and imaginary parts of the matrix η, and
Γ = diag{�1, �2, . . . , �s}, n = diag{n1, n2, . . . , ns}, I is the s-dimensional identity matrix.

Suppose the solution to the diffusion equation (6) is

χ(x, p, t) = χ(x ′, p′, 0) exp
[

1
4 (x ′, p′)α0(x

′, p′)T − 1
4 (x, p)α0(x, p)T

]
, (8)

where x ′ = xM1 + pM2, p
′ = xM3 + pM4, with Mj being time varying real matrices, α0 a

constant matrix. We may denote M =[M1 M2
M3 M4

]
, then M is the solution of the following matrix

equation:

d

dt
M = WM, (9)

and

α0 = −W−1

[
Γ

(
n +

I
2

)
⊕ Γ

(
n +

I
2

)]
. (10)

The solution of equation (9) is

M = exp(Wt) · M(0). (11)

The initial conditions of Mj are M1(0) = M4(0) = Is and M2(0) = M3(0) = 0, thus the
solutions are

M = exp(Wt) · I2s . (12)

The solutions are especially simple when η is real. They are M1 = exp
(
ηt − Γt

2

)
, M2 =

0, M3 = 0, M4 = exp
(− ηt − Γt

2

)
.

3. The separability criterion of the tripartite Gaussian state

The separability problem of the three-mode Gaussian state was perfectly solved [15]. The
three-mode Gaussian states were classified as five different entangled classes [15]. But the
states in this paper can be classified as three different entangled classes: fully inseparable states,
biseparable states, and fully separable states. Following the notation of [15], the correlation
matrix (CM) is denoted as γ , the partial transposition is denoted as 	j(j = 1, 2, 3).
If the canonical operators are arranged in the order of X1, P1, X2, P2, X3, P3, one has
	1 = diag{1,−1, 1, 1, 1, 1},	2 = diag{1, 1, 1,−1, 1, 1}	3 = diag{1, 1, 1, 1, 1,−1}. The
partially transposed CM will be γ̃j = 	jγ	j . Denote

Jn =
n⊕

i=1

[
0 −1
1 0

]
(13)

then the criterion for the fully inseparable state is

γ̃j � iJ3, for all j = 1, 2, 3. (14)

3



J. Phys. A: Math. Theor. 41 (2008) 155301 X-Y Chen

Because of the symmetry of the tri-mode state, the criterion can be simplified to, for example,
γ̃A � iJ .

While for γ̃j � iJ3, (j = 1, 2, 3), the state will be a positive partial transpose (PPT)
tri-mode state, and it can be biseparable or fully separable. The criterion to distinguish the
biseparable and fully separable states is [15] as follows. The CM γ of the PPT tri-mode state
can be written as

γ =
(

A C

CT B

)
, (15)

where A is a 2 × 2 CM for the first mode, whereas B is a 4 × 4 CM for the other two modes.
Define the matrices K and K̃ as

K ≡ A − C
1

B − iJ2
CT , K̃ ≡ A − C

1

B − iJ̃2
CT , (16)

where J̃2 = J1 ⊕ (−J1) is the partially transposed J2.
The condition of the PPT tri-mode state being fully separable is that if and only if there

exists a point (y, z) ∈ R2 fulfilling the following inequality:

min{trK, trK̃} � 2x, (17)

det K + 1 + LT (y, z)T � x · trK, (18)

det K̃ + 1 + L̃T (y, z)T � x · trK̃, (19)

where x =
√

1 + y2 + z2 (note that x, z in this section should not be confused with that used
in the other sections) and L = (u − w, 2 Re(v)) , L̃ = (̃u − w̃, 2 Re(̃v)) if K and K̃ are
written as

K =
(

u v

v∗ w

)
, K̃ =

(
ũ ṽ

ṽ∗ w̃

)
. (20)

Inequality (17) restricts (y, z) to a circular disc C, while inequalities (18) and (19) describe
ellipses E and E ′ respectively. The existence of the point (y, z) then turns out to be the
intersection of the ellipses E and E ′ and the circular disc C.

The intersection of the ellipses E and E ′ is a range in the yz plane which is bounded by
the elliptic curves ∂E and ∂E ′. In the cases considered in this paper, Re (v) = 0, Re (̃v) = 0,

the two elliptic curves ∂E and ∂E ′ are described by

det K + 1 + (u − w)y = (u + w)x, (21)

det K̃ + 1 + (̃u − w̃)y = (̃u + w̃)x, (22)

∂E and ∂E ′ are centered at the y-axis of the yz plane. The intersection of ∂E and ∂E ′ is the
solution of these two equations as far as

x �
√

1 + y2. (23)

Thus the condition of the existence of (∂E) ∩ (∂E ′) is obtained.
Two situations of the intersection of the ellipses E and E ′ and the circular disc C should

be considered. The first is ((∂E) ∩ (∂E ′)) ⊆ C; in this case, the fully separability condition is
determined by (21), (22) and (23). The second is ((∂E) ∩ (∂E ′)) � C; in this case, we should
consider that if one of the tops of E ∩ E ′ is contained in C or not, the two tops are determined
by equations (21) and (22) separately by setting x =

√
1 + y2.

4
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4. The symmetric amplification and damping of the tripartite Gaussian state

4.1. Symmetric evolution of the tripartite state

We consider the totally symmetric amplification and amplitude damping among all three
modes, that is

η = η0I3 + η1S3, (24)

with the matrix S having its entries Sij = 1 for i 	= j and Sij = 0 for i = j (i, j =
1, 2, 3);Γ = �I3, n = nI3, and ηR = η0R I3 + η1R S3, ηI = η0I I3 + η1I S3. To obtain the
time evolution of the state, we need to consider the matrix W defined in (7). The exponential

expression exp(Wt) can be simplified to exp(Wt) = e−�t/2 exp
([

ηR, ηI

ηI , −ηR

]
t
)
. Note that ηR

and ηI commutate with each other; we have[
ηR, ηI

ηI , −ηR

]2

=
[
η2

R + η2
I , 0

0, η2
R + η2

I

]
. (25)

For a matrix with the form of (24), we can rewrite it as η = η0I3 + η1S3 = (η0 + 2η1)P1 +
(η0 − η1)P2, with P1 = 1

3 (I3 + S3), P2 = 1
3 (2I3 − S3). We have P2

1 = P1, P2
2 = P2, P1P2 =

P2P1 = 0. Thus η2
R + η2

I = A2P1 + B2P2, with A =
√

(η0R + 2η1R)2 + (η0I + 2η1I )2, B =√
(η0R − η1R)2 + (η0I − η1I )2. We obtain

exp(Wt) = e−�t/2{[cosh(At)P1 + cosh(Bt)P2] ⊕ [cosh(At)P1 + cosh(Bt)P2]

+

[
ηR, ηI

ηI , −ηR

][
sinh(At)

A
P1 +

sinh(Bt)

B
P2

]
⊕

[
sinh(At)

A
P1 +

sinh(Bt)

B
P2

]
.

(26)

The time-dependent matrix M is

M =
[
b1P1 + b2P2, b3P1 + b4P2

b3P1 + b4P2, b5P1+b6P2

]
, (27)

with b1 = e−�t/2
[

cosh(At) + η0R+2η1R

A
sinh(At)

]
, b2 = e−�t/2

[
cosh(Bt) + η0R−η1R

B
sinh(Bt)

]
,

b3 = η0I +2η1I

A
sinh(At) e−�t/2, b4 = η0I −η1I

B
sinh(Bt) e−�t/2, b5 = e−�t/2

[
cosh(At) −

η0R+2η1R

A
sinh(At)

]
, b6 = e−�t/2

[
cosh(Bt) − η0R−η1R

B
sinh(Bt)

]
. The inverse of the matrix W

can be obtained as follows: all the four blocks of W commutate with each other, so they can
be diagonalized simultaneously. The orthogonal matrix that diagonalizes all the four blocks is

U = 1√
6

⎡
⎣

√
2

√
2

√
2

0
√

3 −√
3

−2 1 1

⎤
⎦ . (28)

The block diagonalized matrix (U ⊕ U)W(U ⊕ U)T can easily be inverted. We have

W−1 = −1

�
(
n + 1

2

) [
d1P1 + d2P2, d3P1 + d4P2

d3P1 + d4P2, d5P1+d6P2

]
, (29)

with (d1, d2, d3, d4, d5, d6) = �
(
n + 1

2

)[
�/2+η0R+2η1R

(�/2)2−A2 ,
�/2+η0R−η1R

(�/2)2−B2 ,
η0I +2η1I

(�/2)2−A2 ,
η0I −η1I

(�/2)2−B2 ,
�/2−η0R−2η1R

(�/2)2−A2 ,
�/2−η0R+η1R

(�/2)2−B2

]
. The constant matrix is

α0 =
[
d1P1 + d2P2, d3P1 + d4P2

d3P1 + d4P2, d5P1+d6P2

]
.

α0 = −�
(
n + 1

2

)
W−1.

5
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4.2. Gaussian initial tripartite state

If the initial state is Gaussian, then the time-dependent state will be Gaussian. For an initial
Gaussian state with the characteristic function χ(x, p, 0) = exp

[− 1
4 (x, p)α(0)(x, p)T

]
,

the evolution of the characteristic function is χ(x, p, t) = exp
[− 1

4 (x, p)α(t)(x, p)T
]
. The

time-dependent CM (in the order of canonical operators X1, X2, X3, P1, P2, P3 or parameters
x1, x2, x3, p1, p2, p3) is

α(t) = M[α(0) − α0)]MT + α0. (30)

We consider the initial Gaussian state which is symmetric among all the three modes, that is,

α(0) =
[
c1P1 + c2P2, c3P1 + c4P2

c3P1 + c4P2, c5P1+c6P2

]
. (31)

The parameters ci should be so chosen that the initial state is a quantum state. The matrix α(t)

has the same matrix structure as α(0); we denote its corresponding coefficients ei . Then

e1 = b2
1(c1 − d1) + 2b1b3(c3 − d3) + b2

3(c5 − d5) + d1. (32)

e3 = b1b3(c1 − d1) +
(
b1b5 + b2

3

)
(c3 − d3) + b3b5(c5 − d5) + d3. (33)

e5 = b2
3(c1 − d1) + 2b3b5(c3 − d3) + b2

5(c5 − d5) + d5. (34)

The substitution 1 → 2, 3 → 4, 5 → 6 into all subscripts of equations (32)–(34) will lead to
e2, e4, e6.

The separability criterion is expressed with the CM γ which is arranged in the order of
modes, that is, χ(x, p, t) = exp

[− 1
4zγ (t)zT

]
, with z = [x1, p1, x2, p2, x3, p3]. After the

rearrangement of the order of xi and pi , we have

γ (t) =
⎡
⎣E1 E2 E2

E2 E1 E2

E2 E2 E1

⎤
⎦ , (35)

with E1 = [
e′

1 e′
3

e′
3 e′

5

]
, E2 = [

e′
2 e′

4
e′

4 e′
6

]
and e′

1(3,5) = 1
3 (e1(3,5) + 2e2(4,6)), e

′
2(4,6) = 1

3 (e1(3,5) − e2(4,6)).

The inseparability criteria of the evolved state can be worked out with matrix algebra, but they
are still too complicated to be explicitly expressed. In the following section, we will consider
the simple case of real parameter amplification.

5. Real amplification with proper Gaussian input

For the real amplification symmetric system, η = ηR, we have M1 = e−�t/2[e(η0+2η1)t P1 +
e(η0−η1)t P2], M2 = M3 = 0, M4 = e−�t/2[e−(η0+2η1)t P1 + e−(η0−η1)t P2]; and α0 = (2n + 1)[(

�/2
�/2−η0−2η1

P1 + �/2
�/2−η0+η1

P2
) ⊕ (

�/2
�/2+η0+2η1

P1 + �/2
�/2+η0−η1

P2
)]

. If the initial symmetric
Gaussian state has the CM

α(0) = (c1P1 + c2P2) ⊕ (c5P1+c6P2), (36)

then α(t) = (e1P1 + e2P2) ⊕ (e5P1+e6P2), with

e1,5 = e±2(η0+2η1)t−�tc1,5 +
�(2n + 1)

� ∓ 2(η0 + 2η1)
(1 − e±2(η0+2η1)t−�t ). (37)

e2,6 = e±2(η0−η1)t−�tc2,6 +
�(2n + 1)

� ∓ 2(η0 − η1)
(1 − e±2(η0−η1)t−�t ). (38)

6
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5.1. The biseparable conditions

The biseparable condition γ̃A � iJ can be expressed with the relation on e′
1, e

′
2, e

′
5, e

′
6. It is

more apparent to be expressed with e1, e2, e5, e6. A direct calculation leads to the biseparable
condition

[1 − (e1e5 + 8e2e5 + 8e1e6 + e2e6)/9 + e1e2e5e6][e2e6 − 1] � 0. (39)

Denote ζ0 = 2(η0 + 2η1)/�, ζ1 = 2(η0 − η1)/�, in the case of max{|ζ0| , |ζ1|} < 1, when
t → ∞, we have e1,5 = 2n+1

1∓ζ0
, e2,6 = 2n+1

1∓ζ1
and e2e6 = (2n+1)2

1−ζ 2
1

> 1. All information of the
initial state is damped at the last. The solution of inequality (39) is

(2n + 1)2 � 1 +
4

�2

(
−η2

0 − η0η1 +
3

2
η2

1 +
1

2
|η1|

√
8�2 + 4η2

0 + 4η0η1 − 7η2
1

)
. (40)

In the case of ζ0 > 1, |ζ1| < 1. When t → ∞, we have e1 → +∞, e5 = 2n+1
1+ζ0

, e2,6 = 2n+1
1∓ζ1

(note that if e1 → −∞, the state should be non-physical). The solution of inequality (39) is

(2n + 1)2 � (1 − ζ1)(1 + ζ0) − 1
9 (1 − ζ1)(ζ0 − ζ1). (41)

The second situation we should consider is ζ0 > 1, ζ1 < −1; we have e1 → +∞, e6 → +∞,

e2 = 2n+1
1+ζ0

, e5 = 2n+1
1−ζ1

at t → ∞, thus the solution of inequality (40) reduces to

(2n + 1)2 � 8
9 (1 − ζ1)(1 + ζ0). (42)

Similar results can be obtained for other domains of the parameters ζ0 and ζ1, They are

(2n + 1)2 � (1 − ζ1)(1 + ζ0) − 1
9 (1 + ζ0)(ζ0 − ζ1), for |ζ0| < 1, ζ1 < −1; (43)

(2n + 1)2 � (1 + ζ1)(1 − ζ0) − 1
9 (1 − ζ0)(ζ1 − ζ0), for |ζ0| < 1, ζ1 > 1; (44)

(2n + 1)2 � (1 + ζ1)(1 − ζ0) − 1
9 (1 + ζ1)(ζ1 − ζ0), for |ζ1| < 1, ζ0 < −1; (45)

(2n + 1)2 � 8
9 (1 + ζ1)(1 − ζ0), for ζ1 > 1, ζ0 < −1. (46)

There are no restrictions to 2n + 1 in the domain of ζ0 > 1, ζ1 > 1 and domain of
ζ0 < −1, ζ1 < −1, which means the final states in these domains are always biseparable. The
synthesis of equations (40) and (41)–(46) is the biseparable condition for all the parameters.
The biseparable condition is shown in figure 1.

5.2. The fully separable conditions

To find the fully separable condition, we need the matrices K and K̃ , which is not difficult
to obtain. We solve equations (21), (22) for x and y and insert them into inequality (23).
Although the algebra calculation is complicated in the process, the final result is rather simple.
Condition (23) turns out to be

− (e1 − e2)(e5 − e6)(e1e6 − 1)(e2e5 − 1) � 0. (47)

In the case of max{|ζ0| , |ζ1|} < 1, when t → ∞, we have −(e1−e2)(e5−e6) = (ζ0−ζ1)
2

(1−ζ 2
0 )(1−ζ 2

1 )
>

0 (for ζ0 	= ζ1 ); the condition of fully separability will be

(2n + 1)2 � (1 + ζ0)(1 − ζ1), for ζ0 > ζ1, (48)

(2n + 1)2 � (1 − ζ0)(1 + ζ1), for ζ0 < ζ1, (49)

which can be rewritten as

7
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Figure 1. The border of biseparable states and fully entangled states, characterized by the thermal
noise n, the ratio of single-mode amplification to amplitude damping, the ratio of inter-mode
amplification to amplitude damping.
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Figure 2. The border of fully separable states and biseparable states, characterized by the thermal
noise n, the ratio of single-mode amplification to amplitude damping, the ratio of inter-mode
amplification to amplitude damping.

(2n + 1)2 � (1 − 2η0/� + 2η1/�)(1 + 2η0/� + 4η1/�), for η1 > 0, (50)

(2n + 1)2 � (1 − 2η0/� − 4η1/�)(1 + 2η0/� − 2η1/�), for η1 < 0, (51)

respectively. These are the fully separable conditions of the residue states and are shown
in figure 2. Concerning condition (17), we consider the critical situation of (2n0 + 1)2 =
(1 + ζ0)(1 − ζ1) for ζ0 > ζ1, condition (17) reduces simply to ζ0 > ζ1, thus the state is fully
separable in the critical situation. By physical consideration, a state with n > n0 then is fully

8
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Figure 3. The noiseless situation, the solid line for the border of fully separable and biseparable
states, the dashed line for the border of biseparable and fully entangled states. The difference of
the two curves is very small, the detail of the difference is amplified by a factor of 100 and is shown
by the dashdot line.

separable, because the state will be made more separable by adding the noise. The same
conclusion is true for the case of ζ0 < ζ1. Hence the fully separability conditions are given by
inequalities (48) and (49) in the situation of max{|ζ0| , |ζ1|} < 1.

Moreover, we can prove that (48) and (49) are also fully separable conditions of the final
state (t → ∞) for other situations considered here. We provide the proof of one of the cases
here; the other cases can be followed with the same method. The case we considered is
ζ0 > 1, |ζ1| < 1; in this case we have e1 → +∞, e5 = 2n+1

1+ζ0
, e2 = 2n+1

1−ζ1
, e6 = 2n+1

1+ζ1
> 0, thus

(e1 − e2) > 0, (e5 − e6) < 0, e1e6 > 1 and condition (47) reduces to e2e5 � 1, which leads to
(48). Condition (17) can also be fulfilled. A comparison of the figures as well as the formula
shows that the fully separable and biseparable conditions are quite close to each other. The
detail of the difference of the two is displayed in figure 3 for the noiseless situation.

6. Conclusion

We have derived the time-dependent solution of the multi-mode continuous variable state
in the environment of amplification, amplitude damping and thermal noise. The evolution
equation is expressed in the fashion of the characteristic function of canonical operators. The
solution is analytically obtained for any multi-mode state. The result of the time-dependent
state was applied in the analysis of the separability of tripartite three-mode Gaussian states
when all three modes are identical in the initial preparation and in the later interaction with
the environment through amplification, damping and thermal noise. The analytical expression
of fully separable and biseparable conditions for the final tripartite three-mode Gaussian state
is obtained when the initial Gaussian state is properly chosen. The set of initial Guassian
states is still quite large although restricted; examples of those Gaussian states are vacuum
state, tripartite three-mode pure entangled symmetric Gaussian state and tripartite squeezed
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thermal state [16]. The separability conditions are characterized by the ratio of the single-mode
amplification parameter to the damping coefficient, the ratio of the inter-mode amplification
parameter to the damping coefficient, and the thermal noise. The biseparable condition and the
fully separable condition are very close to each other, make the domain of biseparable but not
fully separable states quite small, while both the domains of the genuine entangled tripartite
states and fully separable states are large enough. We use the same separability criterion as in
[16]; the case that does not appear in [16] is that the residue states considered here may involve
infinite large elements of the correlation matrix. Further analysis on the some non-symmetric
tripartite Gaussian state can be found in [25].
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